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Reconstructing networks from simple and complex contagions
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Network scientists often use complex dynamic processes to describe network contagions, but tools for fitting
contagion models typically assume simple dynamics. Here, we address this gap by developing a nonparametric
method to reconstruct a network and dynamics from a series of node states, using a model that breaks the
dichotomy between simple pairwise and complex neighborhood-based contagions. We then show that a network
is more easily reconstructed when observed through the lens of complex contagions if it is dense or the dynamic

saturates, and that simple contagions are better otherwise.
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Introduction. Contacts between individuals are how dis-
eases, information, and transmissible social behavior spread
through a population. Classical epidemic models treat these
contact as well mixed [1], but we now have overwhelm-
ing evidence that the structure of these social systems can
strongly influence the outcomes of a contagion—for example,
the epidemic threshold [2], extent [3,4], or the time-scale
of spread and the distribution of secondary infections [5].
Despite the strength of the evidence for structural models,
network methods remain difficult to deploy beyond the the-
oretical laboratory, partly because detailed contact patterns
are seldom observed and instead need to be inferred from
messy and incomplete observational data [6,7]. In fact, this
inference problem—network reconstruction—is still a funda-
mental problem in network science [6,8].

Recent progress suggests that state-of-the-art reconstruc-
tion is possible with Bayesian frameworks [9,10] in cases
where the contagion spreads via single exposures to infectious
individuals [9]. Other recent work has shown that network
reconstruction is possible using measurements from repeated
simple cascades [10], or binary state time series [11]. Less is
known about the inference of social contagions, often thought
to spread due to multiple exposures [12—14]. Previous studies
have focused on distinguishing different types of contagions,
whether interacting contagions and social reinforcement [15],
simple and complex contagions [16,17], or heterogeneous and
complex contagions [18], but these assume the underlying
contact network is known and there is no emphasis on recon-
struction itself.

In this Letter, we develop a nonparametric approach to
network reconstruction from contagion data that does not
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assume the contagion dynamics are simple or complex. Using
a time series of binary node states as input, we show how
to jointly identify the network’s structure and the dynamical
rules that generated the contagion. Our method is conceptually
related to that of Refs. [11,19,20], which all reconstruct a net-
work and its dynamical rules from binary time-series. Unlike
these previous studies, however, we put few restrictions on
the contagion rules, and we generate a complete posterior
distribution over parameters and contagion rules instead of
point estimates.

We then use this framework to examine the difficulty of
network reconstruction as a function of the contagion pro-
cess’s rules.

Neighborhood-based contagions on networks. We describe
network contagions with a neighborhood-based susceptible—
infected—susceptible (SIS) model [21], which encapsulates
several simple and complex contagion processes as special
cases. This contagion process is defined as follows: At time
t, each infected nodes recover with probability y and each
susceptible nodes become infected with probability c(v, 6),
where ¢ : N +— [0, 1] is the contagion function, v is the
number of infected neighbors of a node, and 6 denotes any
function parameters. We write this function as a contagion
vector ¢ = [co, ..., cy—1]” in nonparametric form, where c,
denotes the probability of infection by v infected neighbors
and N is the number of nodes.

The classical network SIS and threshold models are special
cases of this general model [21]. In discrete simple conta-
gions, a node is infected with probability 8 from a single
exposure, and exposures are modeled as independent, mean-
ing that the contagion function is c(v, 8) =1— (1 — B)".
In complex contagions, multiple exposures are required for
the process to spread, and they are most commonly stud-
ied using the threshold model [12,13], where a node adopts
an opinion when the number of its neighbors holding that
opinion exceeds a critical threshold 7. In that case, the con-
tagion function becomes c(v, B, v) = p1,>,, where g = 1.
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This nonparametric model allows us to define a reconstruction
process unrestricted by these two particular cases.

To describe the time evolution of this dynamical process
mathematically, we denote the states of all nodes with a vector
x(t) = [x1(t), ..., xy@)]7, where x;(¢) is the infection status
of individual i at time #, with x;(r) = 0 corresponding to a
susceptible state and x;(¢) = 1 to the infected state. We track
the states of nodes at unit time intervals t =0,1,...,T.
The collection of the state vectors is then the matrix X =
[x(0), x(1), ..., x(T)].

All the transition probabilities of the dynamics can be
compactly expressed as

P(xi(t + 1) | x:(1), A, 6)
=b(y, 1 —xi(t + 1)) by, x:(t + 150 (1)

where 6 denotes all model parameters collectively—the re-
covery rate and the nonparametric contagion functions—and
where b(p, x) = p*(1 — p)!=* is the Bernoulli probability
mass function. In the absence of additional dependencies, we
can write the joint probability of the transitions from step ¢ to
stept + 1 as

P(x(t+1) | x(t). A, 0) = [ [PGat + 1) | x:(0). A, 6).

eV
2
The joint probability of a sequence of states X is then given
as the product

T-1
PX =x|A, 0)=[]Pai+1)Ix0), 4, 6), 3

t=1

since the dynamics are Markovian. By substituting Eq. (1) in
Eq. (2) and then in Eq. (3) and rearranging terms, we can
finally rewrite this probability as

N—-1
PX |A,0)=f(y,X)[[ "0 = co)™, )
=0
where
T-1
me =Y (1= xi(Oi(t + D1y, (5a)
t=0 ieV
T-1
ne =YY [1=xOI1 = x5t + Dlly=e,  (5b)
t=0 ieV

are the counts of infection events occurring and failing to
occur when the number of infected neighbors is £, and where
f(y,X)isafunction of y and X, but not of A. [This factoriza-
tion is due to Eq. (1), where v;(¢) is the only term that depends
on A, implicitly.]

These equations determine the probability of a particular
sequence of node states occurring for a given adjacency matrix
A and set of dynamical parameters 6 and, through Bayesian
inference, they can be reversed to obtain the probability of
these structural and dynamical properties given a sequence of
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FIG. 1. Overview of the problem. (a) A contagion spreads on a
network for 7 time steps, and we observe the resulting sequence
of states X. The probability that a susceptible node (white) be-
comes infected (red) at the next time step is a function c(v) of
the number of infected neighbors it has, e.g., v = 4 for the square
node highlighted in blue. (b) We compute a nonparametric Bayesian
estimate of the contagion function c(v). Here, we show an estimate
of ¢(v) obtained from a single short realization of the dynamics when
the network is known. Error bars show the 50% highest-density
posterior interval (HDPI) of c(v). (c) We estimate the network and
the contagion function c¢(v) simultaneously using the marginals of
the posterior distribution, Eq. (7). The reconstruction error goes to 0
as the amount of data T goes to infinity. The shaded regions indicate
the 50% HDPI, and lines show the median AUROC across 10°
repetitions. (d) The reconstruction quality is determined by the shape
of the contagion function, here demonstrated by varying its overall
infectivity B and the level of complexity w € [0, 1]. We use the
parametrization c(v, 8, w) = (1 — w)g + wh, where g(v, ) =1 —
(1 — B)¥ describes a simple contagion model, and h(v, B) = 1,
describes a complex threshold model.

system states. Figure 1 highlights this framework, which we
now describe in more detail.

Network and dynamic reconstruction. Applying Bayes’
rule, we write

P(X |A,0)PA P(p,0
PA.6.p | X) = X | )P((X)I,O) (o )’ ©)

where P(A | p) is our prior over network structures A, and
where p € [0, 1] is a parameter of the network model, a simple
Erd6s-Rényi model of expected density p. This model assigns
a probability P(A | p) = p/E!(1 — p)(O)—IEl to networks with
|E| edges on N nodes. (But see Ref. [9] on replacing this
simplistic assumption with more structured models.) Notic-
ing that the parameters of the dynamical process 0 = (y, ¢)
and the density p are all defined on the interval [0, 1], we
choose independent (conjugate) beta priors with hyperparam-
eters (a,, b, ) for y, and likewise for all the other parameters.
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With these modeling choices, the posterior distribution can
be written in closed form as

N-1
PA,0,p|X)x f(y,X) x 1_[ CZ’”““*I(l _ Ce)anb[f]
=0
N
X p|E|+ap—1(1 _p)(z)—|EH—hp—], (7)

where we have dropped normalization terms and redefined
f(y,X) to include the prior density of y also.

The network structure A is the primary target of network
reconstruction, so we first focus on the marginal posterior
distribution, which is obtained by integrating Eq. (7) over
contagion vectors ¢, recovery rates y, and densities p. This
yields

PA |X)O<B<|E|+ap, (Z) —|E|+bp)

N-1
x [T Bone + ae.ne +bo), ®)
=0
where B(a, b) = ['(a)T'(b)/T"(a + b) is the beta function. We
generate samples from this distribution with a simple edge-flip
Markov chain Monte Carlo (MCMC) algorithm [9]. We can
then use these samples to compute a matrix Q of edge prob-
ability estimates, @ = " | A®)/N,, where N; is the number
of samples. All our results are computed using chains starting
from random initial conditions, with samples taken every 10*
steps following an initial burn-in of 103 steps.
We augment these network samples with estimates of the
dynamical parameters, 8 = (y, ¢), using the relation

P(y,c,p|X,A)xP(y | X,A)P(c|X,A)P(p | X, A),

which is obtained by conditioning Eq. (7) on A, dropping all
constants and noticing that the results factorize as a product
of beta densities. More specifically, we find that P(y | X, A)
is a beta distribution with parameters (h + a,,, g + b, ), where

T-1
g= Y xtx(t+ 1),

t=0 ieV
T-1

h="> %Ol —x(t + D).

t=0 ieV

Similarly, the nonparametric infection probabilities ¢ follow
beta distributions ¢, ~ Beta(m; + a,, ny + by). There is no
need to sample p directly as A offers a good summary of
structure; nonetheless, if needed, its posterior density is also a
beta distribution.

Results. Figure 1 illustrates our nonparametric Bayesian
approach using the Zachary’s Karate Club network (hence-
forth ZKC) [22] as an example. We generate synthetic time
series data comprising nodal states for 7 = 103 time steps
with a recovery rate of y = 0.1 starting from the initial condi-
tion x(0) = 1 to prevent premature stochastic extinctions. We
study the impact of the contagion function by running these
simulations with both the SIS model, defined by c(v, 8) =
1 — (1 — B)", and the threshold contagion model c(v, B, 7) =
Blv > t with T = 2 (we also considered T = 3 in the Supple-
mental Material [23]). We find that imperfect reconstruction

of the contagion function ¢ is possible with short time series,
as illustrated in Fig. 1(b). Values of v for which we have little
data—corresponding to high degrees—are more difficult to
estimate accurately, as our nonparametric framework does not
benefit from the strong inductive biases of simpler models.

Figure 1(c) describes the quality of the network reconstruc-
tion for ZKC, as measured by the Area Under the Receiver
Operating Characteristic (AUROC) [24], as a function of the
amount of time-series data. We calculate the AUROC by
treating the edges A of the ZKC as binary labels and edge
probabilities O as posterior estimates for these labels. To
make this comparison meaningful, we first select 8 = 0.04 for
the simple contagion process and then match the maximum
number of infection events per node of both processes in
expectation by tuning the value 8 of the complex contagion
process with the Robbins-Monro algorithm [25]. Both pro-
cesses thus generate a similar amount of transition data, but
their quality may vary.

We observe an intermediate value of 7 where complex con-
tagions reconstruct the network more accurately than simple
contagions. In addition, we find that increasing the amount
of data leads to diminishing returns in reconstruction accu-
racy and that the accuracy reaches a plateau close to 1 for
both dynamics in the limit of large 7. Lastly, we construct
a mixture of contagion functions parametrized by w € [0, 1]
(where w = 0 corresponds to a simple contagion and w = 1
to a threshold contagion) Fig. 1(d) demonstrates that network
reconstruction depends on both the infectivity of the conta-
gion function and the complexity of the contagion.

Having confirmed that the method works well, we then
investigate whether complex or simple contagion models lead
to an easier network reconstruction problem. We explore this
question through a comprehensive simulation experiment with
generative network models that capture structural properties
observed in empirical networks. The Erd6s-Rényi model [27],
which we use to examine the effect of network density, is
characterized by p, the probability of two nodes connecting at
random. We use the network configuration model (CM) [28]
with a degree distribution p(k) o< k* supported on [2, N — 1]
to observe the effects of degree heterogeneity, and we com-
ment that when « is increased, the network density also
increases. The clustered network model [29], which we use
to represent clique structure, is constructed by forming a bi-
partite network, where type-1 nodes have degree 2 and type-2
nodes have degree s, and then projecting that network onto
the type-1 nodes to create cliques of size s. The mean degree
of the projected network scales with the square of the clique
size. We fix the network size to N = 50 nodes and generated
time series of T =2 x 10 steps. (We ran the study on two
additional models; see the Supplemental Material [23] and
Refs. [30-32] for more details.)

Figure 2 summarizes the result of this experiment using
the difference in AUROC, with positive values (red) corre-
sponding to regions of the parameter space where complex
contagions outperform simple contagions. To complement
this information, we also calculate the network density es-
timate quality, ¢, =1 — Ziv;l |ps — p|/Ny and compute a
difference in performance Ag,.

We find structural and dynamical regimes where different
types of contagions outperform each other. The regions where
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FIG. 2. The average difference in reconstruction performance
between simple and complex contagions for the SIS model and
the threshold model with 7 = 2. Red denotes regions where com-
plex contagions outperform simple contagions. Blue denotes regions
where simple contagions outperform complex contagions. The first
row visualizes a sample from each network model; the second row
compares the performance of the network reconstruction; and the
third row compares the estimation of the network density. The
gray lines show the basic reproduction number Ry = fo(A)/y €
{1, 11, 21, ...} [26], where o (A) is the spectral radius of A, and grow
when moving from the lower left corner to the upper right.

simple contagions outperform complex contagions can be
sufficiently explained by the basic reproduction number Ry,
calculated as Bo(A)/y, where o (A) is the spectral radius of
A. For all models, the simple contagion process outperforms
the complex contagion process in a region roughly corre-
sponding to 2 < Ry < 6 in the simple contagion. For higher
Ry values, the complex contagion process outperforms sim-
ple contagion as the infection time series saturates. Complex
contagion never generates transitions with v = 1 since the
threshold forbids it; this allows the algorithm to infer denser
substructures without noise introduced by pairwise infection
information. Just above this region, there is another region for
large enough Ry where simple contagion again outperforms
complex contagion. This can be understood because com-
plex contagion infers a network close to a complete network,
whereas simple contagion infers an empty network—but with
high confidence about several of the network links. For the
densest of networks, these algorithms perform equally (no-
tice that the densest power law CM is far from a complete
network), because there is so much saturation that the elimi-
nation of pairwise information is not enough to overcome the
confounding noise present when almost every node is infected
at once.

There may be cases where, although our algorithm fails
to place links correctly, it nonetheless can accurately re-
cover the number of links, i.e., the density, p. Comparing the
performance of complex contagions with respect to simple

0.2
—e— 1-core
—e— 2-core
0.11 —— 3-core

_0.2 T T 1
101 102 103 104

T

FIG. 3. Difference in reconstruction performance of the network
SIS contagion process and the threshold contagion process with
threshold t = 2, for nodes of various coreness and dynamical pa-
rameters identical to those chosen in Fig. 1(c). This illustrates that for
intermediate amounts of infection data, complex contagions outper-
form simple contagions due to their recovery of k > 2-core nodes.
The shaded regions represent the 50% HDPI, and the lines are the
median of 1000 realizations.

contagions in the bottom row of Fig. 2, we observe that these
regions do not correspond to the performance differences with
respect to AUROC. The regions in the upper right of the
plots for the Erd6s-Rényi and clustered network models where
complex contagions vastly outperform simple contagions in
estimating the network density are caused by bimodality in
the distribution of estimated p values inferred from simple
contagion time series. This is because our MCMC sampler
struggles to sample in this region and gets stuck in local
maxima due to the ruggedness of the likelihood landscape. In
the lower left of the plots, where the variance in the estimated
value of p is lower, we see similar behavior as described above
for the AUROC.

A distinguishing feature of the threshold contagion is that
it cannot spread to nodes within the 1-core. We observe this
in Fig. 3, where we revisit the ZKC results to study the
reconstruction performance of nodes with specific coreness
values, calculated as the average of

Ny N

1 1
pi=1-3 N;IQU—AUI ©)

S s=1

over all nodes i within the same coreness class. We find
that nodes of coreness greater than one are responsible for
complex contagions outperforming simple contagions in the
region before AUROC plateaus [see Fig. 1(c)]. Similarly, as
the amount of data is increased with 7, we see that the
differential performance of 1-core nodes seems to drive the
improvement in the performance of simple contagions com-
pared with complex contagions.

Discussion. By developing a nonparametric approach to the
network inference problem, we avoid model-based biases and
are able to study how the complexity of a dynamic process
helps or hurts our ability to infer its rules and the network
that supports it. We find that complex contagions can have an
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advantage over equivalent simple contagions if they can avoid
saturation and better resolve dense networks.

This result suggests that different dynamical processes
have different statistical power to resolve different network
structures, with threshold contagions being better in dense
cliques when the dynamics are sufficiently intense. More
generally, we could imagine optimizing or tuning a dy-
namic process to infer different network features. Future work
should, therefore, explore other network structures and other
types of contagions (e.g., relative thresholds, superlinear con-
tagions). In doing so, we should be able to categorize different
types of contagions not just by their global accuracy but by
how well they can resolve different local features of networks.

More practically, it also suggests that different data streams
allow us to learn different types of network features depend-
ing on the complexity of their generative mechanisms. Our
results show that network reconstruction is much more fea-
sible for diseases such as SARS-CoV-2 [33], Mpox [34], or
rhinovirus in contrast to highly infectious diseases such as
measles [35] or chickenpox [36]. In the context of social
media where the spread of information is often modeled as

a complex contagion process, our results imply that we will
learn less than would be expected if we simply translate prior
reconstructability results for simple contagion processes [9]
with empirically determined estimates of Ry [37]. For ex-
tremely viral trends or information, however, we may be able
to recover the effective contact networks with more precision
than previously estimated. These results will not only inspire
future network reconstruction methods but also guide how
well different types of experimental data can hope to inform
network reconstruction.

All code and data used in this study are available on
Github [38] and at Ref. [39]. All networks are visualized with
XGI [40].
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